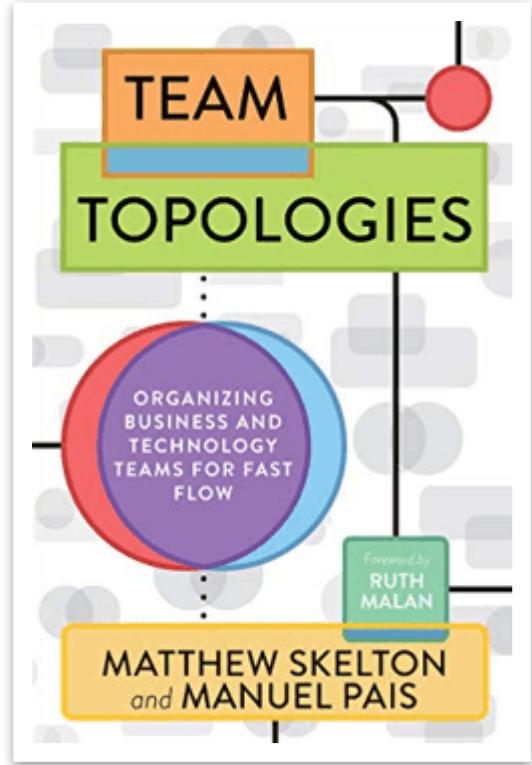
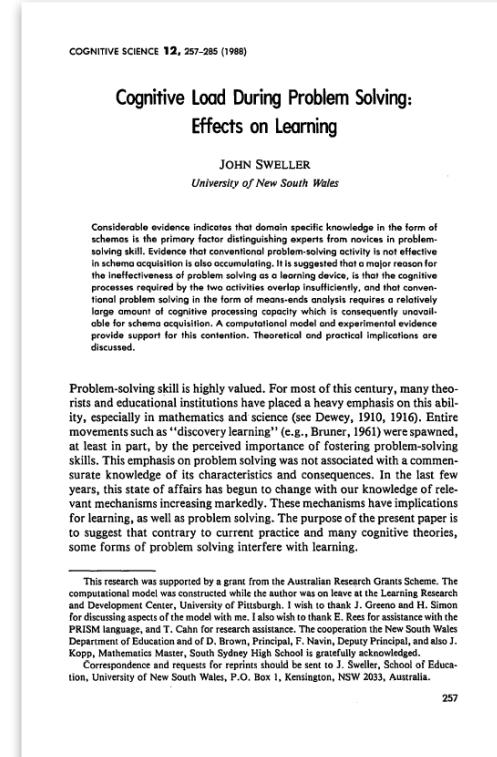


HUMAN BUFFER OVERFLOW


How to Deal with Cognitive Load in High-Performing
Teams
Juliane Reimann

What we will cover today:

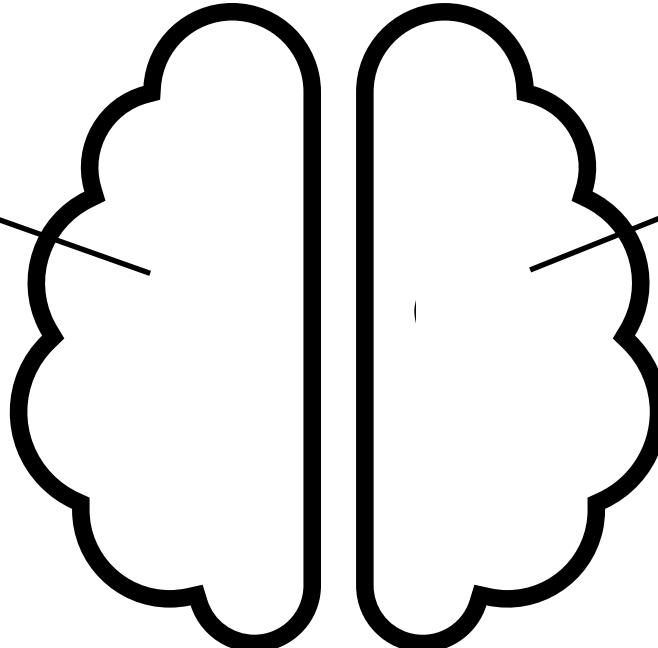

1. Cognitive Load Theory
2. How Security adds Cognitive Load
3. Real-life Examples for Addressing Cognitive Load

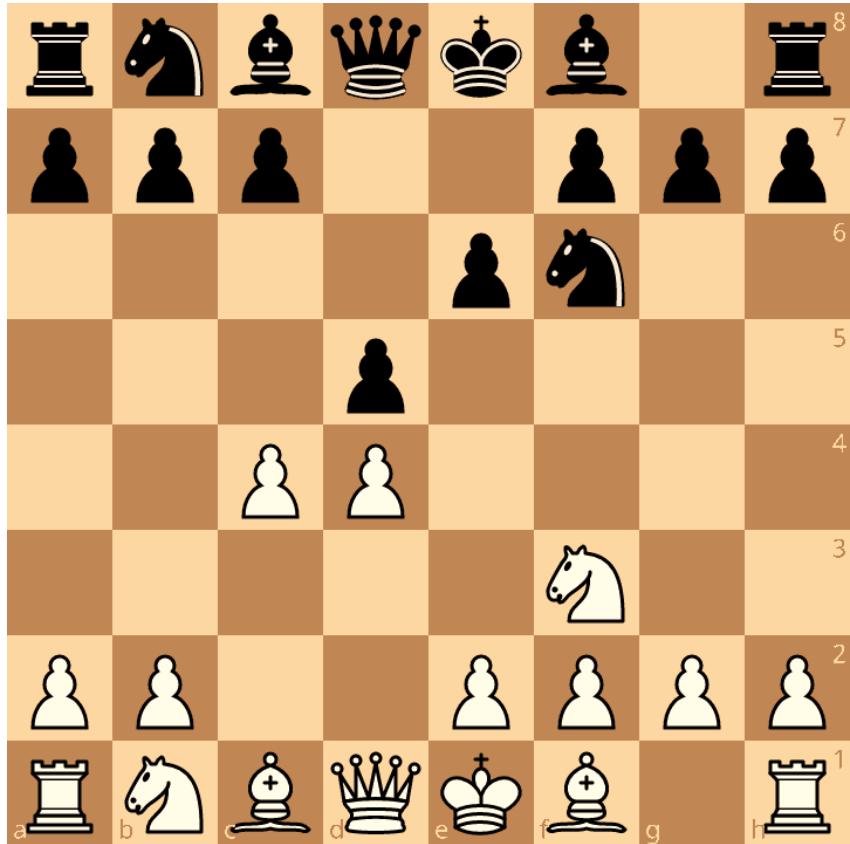
Cognitive Load Theory

Matthew Skelton,
Manuel Pais (2019)

*Team Topologies:
Organizing
Business and
Technology for Fast
Flow of Value*

John Sweller
(1988)


*Cognitive Load
During Problem
Solving: Effects on
Learning*


Long-Term Memory

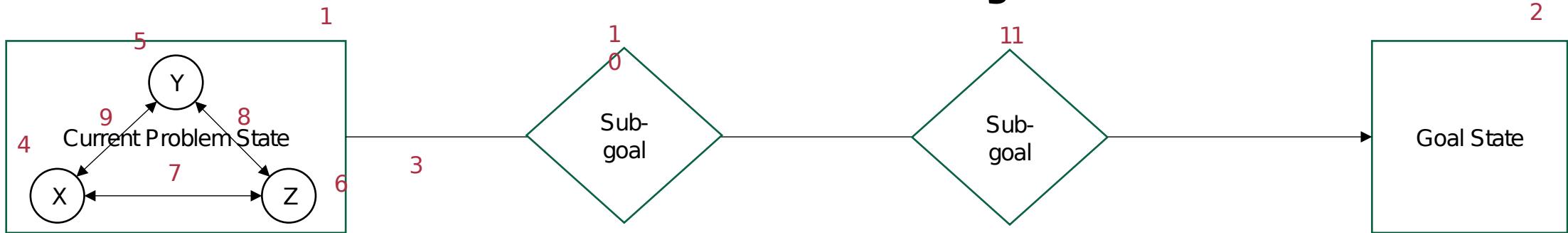
- Store Knowledge
- Seemingly unlimited

Working Memory

- Process Information
- Up to 7 items at a time
- Call schemas as items

What is the next best move?

Schema: **categorization of elements of information**


- How we learn
- Stored in long-term memory
- accessed when needed
- Reduce cognitive load

Problem Solving Strategies

Schema-driven problem solving

Access existing knowledge to recognize patterns

Means-End-Analysis

Types of Cognitive Load

	Intrinsic	Extraneous	Germane
Definition	<ul style="list-style-type: none">Mental effort related to the inherent complexity of a taskDepends on number of interacting elements	<ul style="list-style-type: none">Mental effort related to how information or tasks are presented or handledControllable, can be reduced	<ul style="list-style-type: none">connecting new information to what you already know, forming new schemas“good” kind of load
Chess	Learning how the pieces move, understanding check / check mate	Learning from a poorly written book	Analyzing a specific board situation, thinking through possible moves, and recognizing a tactic you learned earlier
Software Development	Learning the Syntax of PHP or Java	Manual deployments / configuration	Figuring out how different components interact within a system

The Role of Security

Cyber Security Knowledge	Development Workflow	Security Testing	Processes	Communication Barriers	Psychological Aspects
Understanding common vulnerabilities and risks	Late-stage security feedback (e.g., after implementation)	Understanding the purpose of different scanning tools	Unclear processes for handling findings	Knowing who to talk to for security questions	Fear of doing something wrong related to security
Understanding security terms (e.g., threat modeling, SAST)	Building up knowledge prior to resolving a security task	Understanding which tools are needed for your applications	Lack of guidance on prioritization	Receiving timely, helpful responses from the security team	Hesitation to ask security questions
Understanding security requirements	Switching between tools to complete security-related work	Interpreting scanner results (e.g., SAST, DAST)	Overlapping assessments from different security units (AppSec, SOX, CPP)	Receiving tickets or tasks with enough context	Feeling overwhelmed by security input
Knowing where to find reliable security guidance	Difficulty integrating security tasks into sprint/backlog planning	Configuring or tuning scans (e.g., exclusions, scope)	Missing templates or checklists for recurring security tasks	Navigating conflicting input from different security stakeholders	Feeling safe to experiment and learn about secure development
Secure implementation of features (e.g., auth, validation, encryption)		Dealing with false positives	Unfriendly assessment formats (e.g., Excel questionnaires)		
		Getting access to required security tools or platforms			

The Role of Security

● INTRINSIC

● EXTRANEOUS

● GERMANE

Cyber Security Knowledge	Development Workflow	Security Testing	Processes	Communication Barriers	Psychological Aspects
Understanding common vulnerabilities and risks	Late-stage security feedback (e.g., after implementation)	Understanding the purpose of different scanning tools	Unclear processes for handling findings	Knowing who to talk to for security questions	Fear of doing something wrong related to security
Understanding security terms (e.g., threat modeling, SAST)	Building up knowledge prior to resolving a security task	Understanding which tools are needed for your applications	Lack of guidance on prioritization	Receiving timely, helpful responses from the security team	Hesitation to ask security questions
Understanding security requirements	Switching between tools to complete security-related work	Interpreting scanner results (e.g., SAST, DAST)	Overlapping assessments from different security units (AppSec, SOX, CPP)	Receiving tickets or tasks with enough context	Feeling overwhelmed by security input
Knowing where to find reliable security guidance	Difficulty integrating security tasks into sprint/backlog planning	Configuring or tuning scans (e.g., exclusions, scope)	Missing templates or checklists for recurring security tasks	Navigating conflicting input from different security stakeholders	Feeling safe to experiment and learn about secure development
Secure implementation of features (e.g., auth, validation, encryption)		Dealing with false positives	Unfriendly assessment formats (e.g., Excel questionnaires)		
		Getting access to required security tools or platforms			

The Role of Security

● INTRINSIC ● EXTRANEOUS ● GERMANE

Cyber Security Knowledge	Development Workflow	Security Testing	Platform
Understanding common vulnerabilities and risks	Late-stage security feedback (e.g., after implementation)	Understanding the purpose of different scanning tools	Ur ha
Understanding security terms (e.g., threat modeling, SAST)	Building up knowledge prior to resolving a security task	Understanding which tools are needed for your applications	La pri
Understanding security requirements	Switching between tools to complete security-related work	Interpreting scanner results (e.g., SAST, DAST)	Ov as dif (A)
Knowing where to find reliable security guidance	Difficulty integrating security tasks into sprint/backlog planning	Configuring or tuning scans (e.g., exclusions, scope)	Mi ch se
Secure implementation of features (e.g., auth, validation, encryption)		Dealing with false positives	Ur for qu
		Getting access to required security tools or platforms	

Mitigation Strategies

- Secure Development Training
 - Pair-Programming
- Clear and inclusive communication from the Security Team
 - Living Knowledge Base
 - Expert Sessions

The Role of Security

INTRINSIC

EXTRANEous

 GERMANE

Cyber Security Knowledge	Development Workflow
Understanding common vulnerabilities and risks	Late-stage security feedback (e.g., after implementation)
Understanding security terms (e.g., threat modeling, SAST)	Building up knowledge prior to resolving a security task
Understanding security requirements	Switching between tools to complete security-related work
Knowing where to find reliable security guidance	Difficulty integrating security tasks into sprint/backlog planning
Secure implementation of features (e.g., auth, validation, encryption)	

Mitigation Strategies

- Defining a **clear point go-to person** for Security topics in the team
 - **Centralized knowledge base**
 - Automation
- Integrating security into **planning with visible backlog items**
- Improving the workflow: **IDE integrations, Jira-Integrations**
 - Improving **communication** between different stakeholders
 - **Relatable and easy to understand policies**
- Fostering the **shift-left mindset** and defining a **clear SSDLC**

The Role of Security

● INTRINSIC ● EXTRANEOUS ● GERMANE

Mitigation Strategies

- Positive **Security Culture**
- **Collaboration** between development teams and the security team
- **Knowledge Exchange Formats**
- **Secure Development Training**

Communication Barriers	Psychological Aspects
Knowing who to talk to for security questions	Fear of doing something wrong related to security
Receiving timely, helpful responses from the security team	Hesitation to ask security questions
Receiving tickets or tasks with enough context	Feeling overwhelmed by security input
Navigating conflicting input from different security stakeholders	Feeling safe to experiment and learn about secure development

secure security tools
platforms

Real-life Examples

#1 Pipeline Abstraction Layer (PAL)

- **Standardized way** to integrate security scanning with **pre-configured** container images
- Centralized documentation of integration
- Centralized maintenance of the images by Security
- No tool-specific UIs or configurations for the Dev Teams
- Tools can be switched under the hood

#2 Adaptive Questionnaire for SSDLC Onboarding

- **Relevant questions** based on application type
- **Automation**
 - **Background-checks** for existing accounts
 - creation of **tool accounts** via API
 - **e-mail** with relevant setup instructions
 - **ticket creation** progress tracking
- **Enable Dev Teams** to **independently** start the process
- **Only relevant information** are passed to the Dev Teams

SSDLC Onboarding Form

This Form helps the Product Security Team to provide you the right information to successfully onboard your Application to the relevant Tools for testing the security status of your Application

Hallo, Julianne. Wenn Sie dieses Formular senden, sieht die zuständige Person Ihren Namen und Ihre E-Mail-Adresse.

* Erforderlich

1. Please provide the U-Number of your Application as a primary identifier *

Geben Sie Text ein, der U- enthält.

2. Please provide the Application Name: *

Ihre Antwort eingeben

3. Who is the Application Owner? *

E-Mail Address of the Application Owner:

Geben Sie eine E-Mail-Adresse ein

4. Application Type *

Wählen Sie höchstens 2 Optionen aus.

Bespoke Application

Commercial off the Shelf + Custom Code

Commercial off the Shelf

Software as a Service - SaaS

We are already onboarded to Static Application Security Testing - SAST.

Sonstiges

5. Are you using containers in your application in the production environment? *

Wählen Sie höchstens 2 Optionen aus.

Yes

No

We are already conducting static container image scans.

6. Does your Application have accessible endpoints like WebUIs or APIs? *

Wählen Sie höchstens 2 Optionen aus.

Yes

#3 Building a Security Champions Program

- Regular **knowledge exchange** sessions
- **Shared communication channel** between Security Team and Dev Teams
- Publish **internal articles** on relevant security topics
- Launched a **role-based training program** on threat modeling
- Security Community as a **safe space** for learning and growth

Thank you

for your attention!

Connect with me on LinkedIn

Resources

Carpenter, Perry; Roer, Kai (2022): The Security Culture Playbook: An Executive Guide To Reducing Risk and Developing Your Human Defense Layer. Wiley.

Driskell, J. E., & Salas, E. (1992). Collective behavior and team performance. *Human Factors*, 34(3), 277–288.

Skelton, Matthew; Pais, Manuel (2019): Team Topologies. Organizing Business and Technology Teams for fast Flow. IT Revolution, Portland, Oregon.

Sweller, John (1988) „Cognitive Load During Problem Solving: Effects on Learning.“ *Cognitive Science* 12. N. 2 (1988): 257-285.

Sweller, John; Merrienboer, Jeroen J. G. Van; Paas, Freed (1998): Cognitive Architecture and Instructional Design. *Educational Psychology Review* 10(3) (1998): 251-296.

Sweller, John; Merrienboer, Jeroen J. G. Van; Paas, Freed (2019): Cognitive Architecture and Instructional Design: 20 Years Later. *Educational Psychology Review* 31 (2019): 261-292.

Wager, Michael (2025): Standardisierte Security Scans für CI/CD Pipelines. (<https://www.secure-io.de/standardisierte-security-scans-fuer-ci-cd-pipelines/>)