

Structuring (cyber) incident root-cause investigations

A practical walk-through

João Collier de Mendonça
Munich, November 2025

This session covers

Background

Healthcare threat landscape, incident response and a team journey

Approach

Understand environment constraints and stakeholders' needs

Structuring the investigation

Using DFIQ to structure an investigation

Takeaways

Learnings for similar journeys

Understand the healthcare setting

Background

Threat landscape

Healthcare as a profitable target, real risk for patients

RANSOMWARE

Company Paid Record-Breaking \$75 Million to Ransomware Group: Report

Zscaler is aware of a company that paid a record-breaking \$75 million ransom to the Dark Angels ransomware group.

Cyber attacks are one of the biggest threats facing healthcare systems

The vast amount of information held by health services makes them a prime target for cyber criminals

Ransomware attacks against hospitals put patients' lives at risk, researchers say

NEPRASH: The good news here is that dying in a hospital is still a really unlikely event. The bad news is it's more likely to happen if you have the bad luck to be admitted to a hospital during a ransomware attack.

ANDY GREENBERG

SECURITY JUN 12, 2024 6:38 AM

Medical-Targeted Ransomware Is Breaking Records After Change Healthcare's \$22M Payout

Cybersecurity firm Recorded Future counted 44 health-care-related incidents in the month after Change Healthcare's payment came to light—the most it's ever seen in a single month.

[Company Paid Record-Breaking \\$75 Million to Ransomware Group: Report](#) | Securityweek

[Cyber attacks are one of the biggest threats facing healthcare systems](#) | FT

[Ransomware attacks against hospitals put patients' lives at risk, researchers say](#) | NPR

[Medical-Targeted Ransomware Is Breaking Records After Change Healthcare's \\$22M Payout](#) | Wired

Why do threat actors target Healthcare?

Healthcare sector is an easy target

- Large and interconnected attack surface
- Poor cybersecurity practices
- Understaffed teams and severe pressure

Healthcare is intrinsically complex

- Legacy systems, security as an add-on
- Unpatched medical devices
- Digitalization push to increase process efficiency

Criminals make money from healthcare data

- Direct financial gains from ransomware
- Selling patient data on criminal markets
- Exploiting patient data in fraud schemes

Siemens Healthineers PSIRT

- Incident response for **products and solutions**
- Assets owned and operated by customers
- Root-cause determination

Why do we investigate root-cause?

- Enable sustainable recovery
- Fulfill regulatory needs (safety and quality)
- Enable continuous improvement

Next version of the service: fantastic opportunity to review

- Process
- Tooling
- Investigation technical aspects

Start and adjust along the way

Approach

Key elements to define process, tools and investigation

Environment

- Fundamental constraints to be observed

Stakeholders

- Specific needs to be met

Specialist knowledge (threat intelligence)

- Identify risks and mitigate them
- Ensure the approach is complete

From those elements, derive:

- Requirements (process, tools and investigation)
- Adequate documentation
- New investigation process

Take one

Understand your
environment

Healthcare specific challenges for forensics

Priority is on restoring operations

Do not get on the way of restoring operations!

Long lifecycles (legacy components)

Know your installed base & ensure compatibility

You only have one shot!

Take as much as data you need but as little as possible

➤ Determining and **addressing root-cause of incidents** is essential to **avoid reoccurrence** and unnecessary downtime.

IT and healthcare incident response

Fundamental differences

IT security: telemetry and automation are commonplace

- Security operation centers, detection and monitoring
- EDR agents, orchestration, automation
- **Abundance of tools for detection and containment**

Healthcare cybersecurity: commonplace medical devices

- Often no integration into cybersecurity operations
- Priorities clinical features vs. cybersecurity features
- **Scarcity of tools for detection and containment**

Size matters

- For small medical devices: turn-off and replace device
- For larger medical devices
 - Recovery performed on-site
 - Forensics data acquired on-site
 - A 13-ton device cannot be easily shipped

Lack of telemetry and automation

Logistics and on-site support needed

Sources

<https://www.siemens-healthineers.com/magnetic-resonance-imaging/3t-mri-scanner/magnetom-prisma>

Translating your environment's constraints into requirements

Focus on restoring operations

Patient first: field technicians' job is to **get system back up and running**

Customers want fastest possible recovery, minimize patient waiting

Forensic acquisition tools must be safe, intuitive, and accessible

Documentation must be usable and adequate to field work needs

Focus of field teams is recovery and not forensics acquisition

Long lifecycles

Siemens Healthineers is largely a "Windows shop"

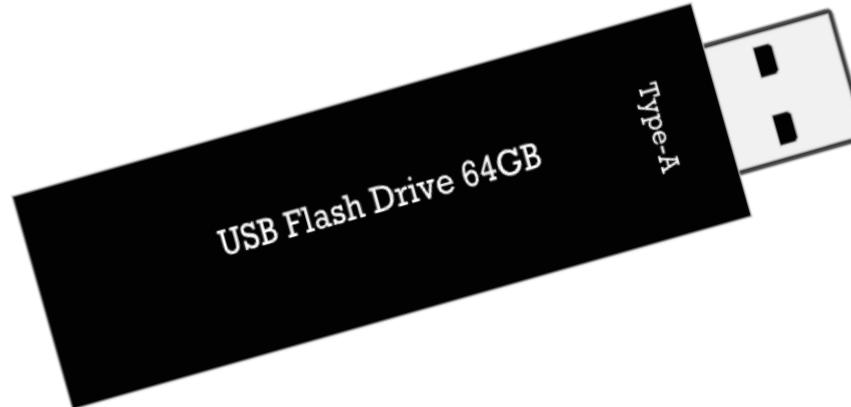
Installed base has from Windows 7 to latest Windows versions

Ensure **compatibility** of tools and have alternatives (scripts)

Enable teams to collect **full disk images** if necessary

Offer alternative acquisition tools (tools might fail on older systems)

Only one shot


Systems will be **swiftly reimaged** and reconfigured to restore operations

No chance to recollect artifacts after the initial triage

Short acquisition times, prioritize artifacts (adaptive collection FTW!)

Offer **different acquisition profiles**, some cases allow broader collection

Take as much as you reasonably need but as little as possible

Collector (forensics acquisition tool)

- Opensource collectors (Velociraptor, Fox-IT acquire/dissect framework)
- In-house developed scripts
- Commercial tools

+ Hardware specs

Take two

**Understand your
stakeholders' needs**

Stakeholders around cyber incidents on medical devices

Customers

- Healthcare delivery organizations (hospitals)
- Business continuity and patient care
- **Must install** upgrades to address security flaws

Regulators

- Define conditions for market access of medical devices
- Focused on patient safety and clinical aspects

Manufacturer's R&D

- Security architecture of medical devices
- Device safety and quality
- **Must deliver** upgrades to address security flaws

Example of investigation requirements

Cluster	Questions
Incident scope & identification of affected assets	<ul style="list-style-type: none">• Affected device(s), versions, serial numbers and environments• Timelines event detected vs. occurred
Containment & Isolation	<ul style="list-style-type: none">• Were immediate containment/mitigation measures performed?• Can the device operate in a standalone mode? (off network)• Were clinical workarounds provided?
Clinical data integrity	<ul style="list-style-type: none">• Were clinical images (DICOM images) modified?• Were clinical databases or structured data sets modified?
Patient safety & essential performance	<ul style="list-style-type: none">• Impact for clinical functionality or essential performance• Impact for safety, performance, or calibration of the device• Actual or potential patient harm

➤ Different stakeholders will analyze incidents from a different perspective.
Digital forensics is an enabler for all of them.

DFIQ enters the room

A way to capture
knowledge

DFIQ basics

- Framework of **forensic questions and approaches**
 - think a **catalog**
- Stores information in YAML (text)
- Lives at <https://dfiq.org>

DFIQ benefits

- Deliberate thinking vs. Intuitive thinking
- Repeatability and explainability
- Quality and depth of investigations

Scenarios	Starting point for investigations High level logical grouping
Facets	Intermediate level grouping Too broad to answer directly
Questions	The What Atomic questions Specific enough to be readily answered
Approaches	The How Details on how to answer a question Specific to the question being answered

Fictive scenario: host infected by USB removable media

A host on the field was apparently infected with malware.

An external hard disk was being used to transfer files before the crash happened.

A hospital technician opened a complaint after the host crashed and got corrupted.

Structuring the investigation

Investigation progress

Initial facets and questions

Usage of USB devices on system

Removable storage devices used on host?

Files transferred from USB device

Files copied from USB media to host?

Malware present on USB device

Autorun files present on storage device?

Hidden folders present storage device?

Files executed from USB device?

Autorun configuration on host?

User executed file on USB device?

Deepening the investigation

Recent changes on the affected system

Created or modified files?

Created or modified user accounts?

Suspicious files running at system boot?

Files in Registry "Run" keys?

Items are in startup folders?

Staging data for future exfiltration

Any files collected into a container?

Access to sensitive files?

Screenshots taken on the host?

Data Exfiltration

UUID: aba6b02b-2ee7-49ab-9cbe-20b7259d4661 **ID:** S1001

Description: An employee is suspected of unauthorized copying of sensitive data (code, trade secrets, etc) from internal systems to those outside of the company's control.

Are there signs of staging data for future exfiltration? F1008

"Staging" refers to the collection of data of interest onto a local system, as a precursor step for future exfiltration of that data. When reviewing data from Questions in this Facet, look for unusual volumes of results (number or size of files downloaded or sent, for example).

- Q1001 What files were downloaded using a web browser?
- Q1004 What screenshots were taken on a computer?
- Q1005 What files have ever been on a computer?
- Q1006 What files are present on a computer?
- Q1017 Were any files collected into a container?

What files were downloaded using a web browser?

UUID: 8620a183-d67f-481e-a63c-d8b8dfa5e968 ID: Q1001

Approaches to Answer

- [Collect download records from local browser artifacts \[Q1001.10\]](#)
 - Parse download records from web browsers' own databases.
 - Tags: [Web Browser](#) [SQLite](#) [Chrome](#) [Safari](#) [Edge](#)
- [Detect browser downloads via file system event logs \[Q1001.11\]](#)
 - File downloads by some web browsers create a specific pattern of events on the file system. We can use this to see browser downloads using file system logs (like Santa).
 - Tags: [Web Browser](#) [macOS](#)
- [Detect browser downloads via change journal records \[Q1001.12\]](#)
 - File downloads by some web browsers create a specific pattern of events on the file system. We can use this to see browser downloads using NTFS change journal (USN journal) records.
 - Tags: [Web Browser](#) [Windows](#) [USN Journal](#) [NTFS](#)

For your own journey
Takeaways

Know your environment

Where is your digital forensics process inserted?

How do you acquire data?

Telemetry and remote access available?
(deployment of deeper analysis tools)

Target systems: age and resource state?

For the people working on your behalf

- are your process and tools usable for them?
- what priorities and resources do they have to perform collection on your behalf?

Know your stakeholders' needs

Who are your stakeholders?

What are their objectives in the investigation?

What key questions must be answered?

From those key questions:

- which ones must be **answered urgently**? (scoping and containment!)
- which ones can be answered **after containment and recovery**? (downstream products)

Integrate specialist know-how

Threat landscape: provide requirements for collection and analysis

What attack techniques are relevant for you?

What artifacts cannot be missed?

What anti-forensics techniques should be considered in your hypothesis?

➤ Use those three areas as **source of requirements** to define the optimal incident investigation process. **Review them with your stakeholders regularly.**

#thinkbeforeuclick

Thank you
for your time!



Siemens Healthineers AG
João Collier de Mendonça

joao.collierdemendonca@
siemens-healthineers.com

linkedin.com/in/joaocmendonca

LinkedIn
Joao C.

ED 2CAF
01 7FBC
EB 06BF
FB F501
C9 F50
EB AED1
5B 5F EA3 84
BE F4 6EAB 01
A5 65 FC2C 4B EB
45 AF 532E 2C FB
AF AA 7F74 4C C9
4D BC 0AF3 7F EBB
01 BF A6A4 06 5B
BF 01 6B42 F5 BE C8
5F 50 0A64 FF A5
10 D1 3067 AE 45 28
71 A3 C75F EA AF 35
66 AB CCF4 6E 4D
18 2C D765 FC 01 A5
40 2E 97AF 53 BF D2
48 74 9CAA 7F 5F
04 F3 86BC 0A 10 1B
39 A4 C7BF A6 71 BC
C6 42 F401 6B 66
E5 64 F950 0A 18 F7
BA 67 96D1 30 40
BE 5F 00A3 C7 48
8E F4 2BAB CC 04 61
08 65 992C D7 39 70
0E AF FD2E 97 C6
41 AA 4B74 9C E5 6D
AA BC 2CF3 86 BA 8A
BF 4C4A BE
01 7F42 8E B5
50 0664 08 49
D1 F567 0E
A3 FF 41 00
AB AE AA 00
2C EA 00 FF
2E 6E
74 FC
F3 53
A4 7F
42 0A
64 A6
67 6B
0A
30
C7
CC
D7
97
9C

Understanding how **threats materialize** and **acting on insights** is essential for **strengthening cyber resilience**.

Do the right thing. Together.